Hydrogen production via methane conversion in an atmospheric pressure microwave (2.45 GHz) plasma

Mariusz Jasiński, <u>Dariusz Czylkowski</u>, Bartosz Hrycak, Mirosław Dors, Jerzy Mizeraczyk

Centre for Plasma and Laser Engineering The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences Gdańsk, Poland

Contents

- Introduction
- Conventional and plasma methods of hydrogen production
- Selection of microwave plasma source
- Waveguide-supplied metal-cylinder-based microwave plasma source (MPS)
- Experimental setup for hydrogen production via methane conversion
- Results
 - Thermodynamic modelling
 - Spectroscopic diagnostics of the plasma flame
 - Hydrogen production via methane conversion
 - Methane dry reforming
 - Methane steam reforming
- Summary and conclusions

Introduction

- Hydrogen is more and more attractive as an efficient and environmental friendly source of energy
- It is considered as a promising fuel of the future
- European roadmap for hydrogen and fuel cells published by European Commission in "Hydrogen Energy and Fuel Cells: A vision of our future" (EUR 20719, EN 2003)
 - from fossil fuel-based economy to hydrogen oriented economy
 - developing and implementing systems for hydrogen production from renewable electricity and biomass
 - research and development of other carbon-free hydrogen sources, such as solar thermal and advanced nuclear should be continued
- United States Department of Energy "Toward a more secure and cleaner energy future for America. National hydrogen energy roadmap" (2002)
 - lower the hydrogen production cost and to improve efficiency
 - improving existing commercial processes (e.g. steam methane reformation) and development new advanced production techniques (e.g. biological methods, nuclear and solar-powered)
 - cost of 1 kWh electric energy in the USA in April 2012 \$0.12
 \$2/kg(H2) → kg(H2)/\$2 → 60 g(H₂)/kWh Target of US DoE by 2020

Introduction

- Our motivation arises from the growing interest in the hydrogen production technologies
- 96% of hydrogen is produced from fossil fuels
- Industrial primary hydrogen sources
 - 48 % from natural gas
 - 30 % from oil
 - 18 % from coal
 - 4 % from water electrolysis
- Methane is a main constituent of natural gas
- Hydrogen production reactions from methane:
 - $CH_4 \rightarrow C+2H_2$
 - $CH_4+CO_2 \rightarrow CO+2H_2$
 - $CH_4+H_2O \rightarrow CO+3H_2$
 - $CH_4+0.5O_2 \rightarrow CO+2H_2$
 - $2CH_4+O_2+CO_2 \rightarrow 3CO+3H_2+H_2O$
 - $4CH_4 + O_2 + 2H_2O \rightarrow 4CO + 10H_2$

(pyrolysis)

(dry reforming)

(steam reforming)

(partial oxidation)

(auto-thermal reforming)

(auto-thermal reforming)

Conventional and plasma methods of H₂ production

Production method	Initial composition	Energy yield g(H ₂)/kWh	Reference	
Conventional steam reforming of methane (catalyst)	CH ₄ +H ₂ O+ air	60 Established Industrial Process	Katie Randolph, U.S. DOE, Hydrogen Production, 2013 Annual Merit Review and Peer Evaluation Meeting, May 16, 2013	
Water electrolysis	H ₂ O	20 - 40	Katie Randolph, U.S. DOE, Hydrogen Production, 2013 Annual Merit Review and Peer Evaluation Meeting, May 16, 2013	
Electron beam radiolysis	CH ₄ +H ₂ O	3.6	T. Kappes et al., 8th Int. Symp. on High Pressure Low Temperature Plasma Chemistry, 196, 2002	
Dielectric barrier discharge	CH₄+air	6.7	M. Heintze, B. Pietruszka Catal. Today 89, 21, 2004	
Dielectric barrier discharge	$\begin{array}{c} CH_4 + CO_2 \ / \ H_2O \\ CH_3OH + CO_2 \ / \ H_2O \\ CH_3CH_2OH + CO_2 \ / \ H_2O \end{array}$	0.5 3.3 6.7	B. Sarmiento et al. Journal of Power Sources 169, 140, 2007	
Dielectric barrier discharge	CH ₄ +CO ₂	5.2	M. Dors, T. Izdebski, A. Berendt, J. Mizeraczyk Int. J. Plasma Envir. Sci. Technol., 6, 93, 2012	
Gliding arc	CH ₄ +H ₂ O+air	40	J.M. Cormie, I. Rusu J. Phys. D: Appl. Phys. 34, 2798, 2001	
Glid arc spray	Ar+CH ₃ OH	176	R. Burlica, KY. Shih, B. Hnatiuc, B. R. Locke Ind. Eng. Chem. Res., 50, 9466, 2011	
Plasmatron with catalyst	CH ₄ +H ₂ O+air	225	L. Bromberg et al. Int. J. Hydrogen Energy 25, 1157, 2000	
Coaxial-line-based MPS	CH ₄ +N ₂	17	M. Jasiński, D. Czylkowski et al Int. J. Hydrogen Energy 38, 11473, 2013	
Metal-cylinder-based MPS	CH ₄ +CO ₂ +H ₂ O	42.9	present work	

Selection of microwave plasma source

Microwave plasma sources (MPSs) for gas processing

- surface-wave-discharge MPSs:
 - coaxial-line-supplied, called surfatrons
 - waveguide-supplied, called surfaguides
- nozzle-type MPSs:
 - coaxial-line-supplied coaxial-line-based (low gas flow rate)
 - waveguide-supplied coaxial-line-based (low and high gas flow rate)
- nozzleless MPSs:
 - waveguide-supplied coaxial-line-based (with or without an inner dielectric tube)
 - waveguide-supplied metal-cylinder-based (with or without an inner dielectric tube)
 - waveguide-supplied resonant-cavity-based
- plasma-sheet MPSs:
 - coaxial-line-supplied strip-line-based
 - waveguide-supplied
- microwave microplasma sources (MmPSs)
 - antenna type
 - coaxial-line-based

Waveguide-supplied metal-cylinder-based MPS

Schematic view of the waveguide-supplied metal-cylinder-based MPS

Waveguide-supplied metal-cylinder-based MPS

Illustration of the gas swirl. Inlet gas – mixed (CH_4 , CO_2 , H_2O) Laser visualization of the swirl flow without plasma Visualization of the swirl: the discharge quartz tube covered with the soot after plasma processing of methane Waveguide-supplied metal-cylinder-based MPS

Features of the MPS:

- waveguide-based structure allowing to operate with microwaves of power of the order of a few kW
- nozzleless eliminating the nozzle erosion due to high temperature and thus prevent plasma contamination
- possibility of processing large volume of gases (several thousands NL/h)

Experimental setup

Diagram of the experimental setup for hydrogen production via methane conversion

Experimental setup

Photo of the experimental setup with the waveguide-supplied metal-cylinder-based MPS

Results of the thermodynamic modelling of the methane dry and steam reforming products concentration (volume % in the outgas).Thermodynamic Equilibrium Reactor model (TER) by Kintech Ltd., Chemical Workbench 4.0, Moscow, Russia

Spectroscopic diagnostics of methane plasma

Comparison of the measured and simulated emission spectra of C₂ Swan band in CH_4/CO_2 plasma. Absorbed microwave power P_A=4.5 kW. Methane swirl flow rate - 50 NL/min. Carbon dioxide swirl flow rate - 50 NL/min. 15 mm below the waveguide bottom wall.

Comparison of the measured and simulated emission spectra of OH (A-X) band in CH_4/CO_2 plasma. Absorbed microwave power P_A =4.5 kW. Methane swirl flow rate - 50 NL/min. Carbon dioxide swirl flow rate - 50 NL/min. 15 mm below the waveguide bottom wall.

Hydrogen production. Experiment parameters

MPS type

Waveguide-supplied metal-cylinder-based MPS

Processes

Dry reforming of methane

 $\text{CH}_4 + \text{CO}_2 \rightarrow 2\text{CO} + 2\text{H}_2$, $(\text{CH}_4 + \text{CO}_2)$ - mixed swirl flow

Thermodynamic limit - 58 $g(H_2)/kWh$

Steam reforming of methane

 CH_4 + H_2O \rightarrow CO + $3H_2$, $\ CH_4$ + CO_2 \rightarrow 2CO + $2H_2$, $(CH_4$ + H_2O + $CO_2)$ - mixed swirl flow Thermodynamic limit - 105 g(H_2)/kWh

Constant parameters

- Microwave frequency: 2.45 GHz
- Pressure: atmospheric
- Catalyst: no catalyst

Variable parameters

- Absorbed microwave power (1 5 kW)
- CH₄ swirl flow rate (1500 9000 NL/min)
- CO₂ swirl flow rate (1200 9000 NL/min)
- H₂O_{aq} flow rate (0.5 3 L/h) [H₂O_{gas} flow rate (740 3700 NL/h)]

Hydrogen production effectiveness parameters

- Hydrogen production rate in NL(H₂)/h, shows how many litters of hydrogen is produced per unit of time (one hour).
- Energy yield of hydrogen production in NL(H₂)/kWh is define as a ratio of the hydrogen production rate to absorbed microwave power in kW. Energy yield describes the amount of litters of hydrogen produced using 1 kWh of energy.
- Total methane conversion degree is given by

 $[(CH_4)_{converted} / (CH_4)_{initial} \times 100\%],$

where $(CH_4)_{initial}$ is the total mass of CH_4 and $(CH_4)_{converted}$ is the converted mass of CH_4 .

• Hydrogen concentration in the outgas is defined by relation

 $[Q(H_2)_{outgas}) / Q(CH_4+H_2+C_2H_2+other products)_{outgas}] \times 100\%,$

where $Q(H_2)_{outgas}$ is a hydrogen gas flow rate at the gases output of the MPS and $Q(CH_4+H_2+C_2H_2+other products)_{outgas}$ is the total gases flow rate at the output of the MPS.

 The above listed parameters were calculated from methane mass balance of its conversion products.

Hydrogen production. Processing performance

Process	Variable parameter	Hydrogen production rate	Energy yield	Methane conversion degree	Hydrogen concentration	Remarks
Dry reforming	Increasing absorbed microwave power	Increases almost linearly	Decreases slightly	Increases almost linearly	Increases slightly, almost linearly	Carbon powder (graphite) production
	Increasing CH_4 and CO_2 swirl flow rate	Increases slightly	Increases slightly	Decreases	Decreases	H ₂ concentration decreases almost linearly
Steam reforming	Increasing absorbed microwave power	Increases slightly	Almost constant	Increases	Slightly increases	
	Increasing CO ₂ swirl flow rate	Decreases slightly	Decreases slightly	Decreases	Decreases	Water vapour condensation
	Increasing H ₂ O _{gas} swirl flow rate	Almost constant	Almost constant	Almost constant	Almost constant	

Methane dry reforming

Comparison of the hydrogen production rate, energy yield and hydrogen concentration as a function of absorbed microwave power for different CH₄ and CO₂ flow rates

Hydrogen production rate, energy yield and hydrogen concentration as a function of CH_4 and CO_2 flow rates. Absorbed microwave power of 2.4 kW.

Methane steam reforming

Hydrogen production rate, energy yield and hydrogen concentration as a function of absorbed microwave power. CH_4 swirl flow rate - 3000 NL/h. CO_2 swirl flow rate 3000 NL/h. H_2O_{aq} swirl flow rate - 3 L/h.

Hydrogen production rate, energy yield and hydrogen concentration as a function of CO₂ flow rate. CH₄ swirl flow rate - 3000 NL/h. H₂O_{aq} swirl flow rate - 2 L/h. Absorbed microwave power of 4.5 kW.

Methane steam reforming

Hydrogen production rate, energy yield and hydrogen concentration as a function of H_2O_{aq} flow rate. CH₄ swirl flow rate - 3000 NL/h. CO₂ swirl flow rate - 3000 NL/h. Absorbed microwave power of 4 kW.

Absorbed microwave power kW	Flow rate NL/h	Hydrogen production rate NL(H ₂)/h [g(H ₂)/h]	Energy yield NL(H ₂)/kWh [g(H ₂)/kWh]	Methane conversion degree %	Products in the outgas %
4.5	CH ₄ - 3000 CO ₂ - 1200				H ₂ - 35.62
					CH ₄ – 38.23
		2150	480		CO ₂ – 18.6
		[180]	[42.9]	22	CO – 2.32
	H ₂ O _{aq} - 2 L/h				СН _ 0.84
					$C_2 = 0.04$ C = 258 g/h

The best achieved results of hydrogen production via methane conversion using waveguide-supplied metal-cylinder-based MPS

Summary and conclusions

- The investigations showed advantages of using the metal-cylinder-based MPS in terms of the performance and hydrogen production rate and energy yield
- The metal-cylinder-based MPS can operate in different gases (nitrogen, air, carbon dioxide, methane) with high gas flow rates at atmospheric pressure and microwave power of a few kW
- The spectroscopic measurements showed the high gas temperature (4000-6000 K) which makes the MPS an attractive tool for hydrogen production via gaseous and liquid hydrocarbon conversion
- The hydrogen production rate and energy yield were up to 2150 NL(H₂)/h [180 g(H₂)/h] and 480 NL(H₂)/kWh [42.9 g(H₂)/kWh] in case of methane steam reforming using the metalcylinder-based MPS
- The achieved energy yield of hydrogen production is close to DOE target 672 NL(H₂)/kWh [60g(H₂)/kWh] for 2020
- The metal-cylinder-based MPS has a high potential for hydrogen production via gaseous (and liquid) hydrocarbons conversion but adding catalysts also may improve its performance

Thank you for your attention

Authors: Mariusz Jasiński, Dariusz Czylkowski, Bartosz Hrycak, Mirosław Dors, Jerzy Mizeraczyk

Acknowledgment

This research was supported by The National Center for Research and Development under the program NR14-0091-10 /2010 and The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences under the program IMP PAN O3Z1T1

Centre for Plasma and Laser Engineering The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences Gdańsk, Poland